Can intense predation by bears exert a depensatory effect on recruitment in a Pacific salmon population?

Can intense predation by bears exert a depensatory effect on recruitment in a Pacific salmon population?

Oecologia. 2014 Aug 26;

Authors: Quinn TP, Cunningham CJ, Randall J, Hilborn R

Abstract
It has long been recognized that, as populations increase in density, ecological processes affecting growth and survival reduce per capita recruitment in the next generation. In contrast to the evidence for such “compensatory” density dependence, the alternative “depensatory” process (reduced per capita recruitment at low density) has proven more difficult to demonstrate in the field. To test for such depensation, we measured the spawner-recruit relationship over five decades for a sockeye salmon (Oncorhynchus nerka) population in Alaska breeding in high-quality, unaltered habitat. Twenty-five years of detailed estimates of predation by brown bears, Ursus arctos, revealed strong density dependence in predation rate; the bears killed ca. 80 % of the salmon in years of low salmon spawning abundance. Nevertheless, the reconstructed spawner-recruit relationship, adjusted to include salmon intercepted in the commercial fishery, provided no evidence of demographic depensation. That is, in years when few salmon returned and the great majority were killed by bears, the few that spawned were successful enough that the population remained highly productive, even when those killed by bears were included as potential spawners. We conclude that the high quality of breeding habitat at this site and the productive nature of semelparous Pacific salmon allowed this population to avoid the hypothesized depressed recruitment from depensatory processes expected at low density. The observed lack of demographic depensation is encouraging from a conservation standpoint because it implies that depleted populations may have the potential to rebound successfully given suitable spawning and rearing habitat, even in the presence of strong predation pressure.

PMID: 25154755 [PubMed – as supplied by publisher]

via pubmed: school of aquatic an… http://ift.tt/1zDlOQX


Differential growth in estuarine and freshwater habitats indicated by plasma IGF1 concentrations and otolith chemistry in Dolly Varden Salvelinus malma.

Differential growth in estuarine and freshwater habitats indicated by plasma IGF1 concentrations and otolith chemistry in Dolly Varden Salvelinus malma.

J Fish Biol. 2014 Aug 12;

Authors: Bond MH, Beckman BR, Rohrbach L, Quinn TP

Abstract
This study employed a combination of otolith microchemistry to indicate the recent habitat use, and plasma concentrations of the hormone insulin-like growth factor 1 (IGF1) as an index of recent growth rate, to demonstrate differences in growth and habitat use by Dolly Varden Salvelinus malma occupying both freshwater and estuarine habitats in south-west Alaska. Extensive sampling in all habitats revealed that fish had higher IGF1 levels in estuarine compared to lake habitats throughout the summer, and that the growth rates in different habitats within the estuary varied seasonally. In addition, otolith microchemistry indicated differentiation in estuarine habitat use among individual S. malma throughout summer months. Although growth in the estuary was higher than in fresh water in nearly all sites and months, the benefits and use of the estuarine habitats varied on finer spatial scales. Therefore, this study further illustrates the diverse life histories of S. malma and indicates an evaluation of the benefits of marine waters needs to include sub-estuary scale habitat use.

PMID: 25131145 [PubMed – as supplied by publisher]

via pubmed: school of aquatic an… http://ift.tt/1n4SGw3


Quantitative PCR analysis used to characterize physiological changes in brain tissue of senescent sockeye salmon.

Related Articles

Quantitative PCR analysis used to characterize physiological changes in brain tissue of senescent sockeye salmon.

Biogerontology. 2013 Oct;14(5):483-90

Authors: Storer CS, Quinn TP, Roberts SB

Abstract
Senescence varies considerably among fishes, and understanding the evolutionary basis for this diversity has become an important area of study. For rapidly senescing species such as Pacific salmon, senescence is a complex process as these fish are initiating anorexia while migrating to natal spawning grounds, and die within days of reproduction. To better understand senescence in Pacific salmon we examined expression patterns for a suite of genes in brain tissue of pre-senescent and senescent sockeye salmon. Interestingly, a significant increase in expression of genes involved in telomere repair and immune activity was observed in senescent salmon. These data provide insight into physiological changes in salmon undergoing senescence and the factors contributing to variation in observed senescence rates among individuals and populations.

PMID: 23948798 [PubMed – indexed for MEDLINE]

via pubmed: school of aquatic an… http://ift.tt/1oZN8Fd


Diversity of movements by individual anadromous coastal cutthroat trout Oncorhynchus clarkii clarkii.

Diversity of movements by individual anadromous coastal cutthroat trout Oncorhynchus clarkii clarkii.

J Fish Biol. 2013 Nov;83(5):1161-82

Authors: Goetz FA, Baker B, Buehrens T, Quinn TP

Abstract
Wild, downstream-migrating cutthroat trout, Oncorhynchus clarkii clarkii, smolts and adults were captured at a weir in Big Beef Creek, Hood Canal, Washington, surgically implanted with acoustic tags and tracked to identify spring and summer movements using stationary receivers in order to test the assumption that the species moves little while in marine waters. Overall, 93-96% migrated from the stream into the east side of the long narrow fjord, where they dispersed north and south along the shoreline. Most O. c. clarkii were detected nearshore within 10 km of the release site, with declining detection rates to 77 km. Over one-third (36%) crossed c. 2-4 km of deep water to the other side but only one O. c. clarkii left the Hood Canal basin. Movements and behaviour patterns did not differ between smolts and adults but cluster analysis revealed two modes of distribution, here categorized as residents and migrants. Within these categories of overall distribution, a range of finer-scale behaviour patterns was observed, including sedentary individuals, daily moving between proximate sites and more continuous long-distance travel. Diel movement patterns varied markedly among individuals but overall activity increased near dawn, peaked around mid-day and declined but continued at night. These patterns contrast with sympatric and closely related steelhead trout, Oncorhynchus mykiss, providing new insights into the diversity of salmonid behaviour.

PMID: 24580660 [PubMed – in process]

via pubmed: school of aquatic an… http://ift.tt/1dkKEOe


Evolution of age and length at maturation of Alaskan salmon under size-selective harvest.

Evolution of age and length at maturation of Alaskan salmon under size-selective harvest.

Evol Appl. 2014 Feb;7(2):313-22

Authors: Kendall NW, Dieckmann U, Heino M, Punt AE, Quinn TP

Abstract
Spatial and temporal trends and variation in life-history traits, including age and length at maturation, can be influenced by environmental and anthropogenic processes, including size-selective exploitation. Spawning adults in many wild Alaskan sockeye salmon populations have become shorter at a given age over the past half-century, but their age composition has not changed. These fish have been exploited by a gillnet fishery since the late 1800s that has tended to remove the larger fish. Using a rare, long-term dataset, we estimated probabilistic maturation reaction norms (PMRNs) for males and females in nine populations in two basins and correlated these changes with fishery size selection and intensity to determine whether such selection contributed to microevolutionary changes in maturation length. PMRN midpoints decreased in six of nine populations for both sexes, consistent with the harvest. These results support the hypothesis that environmental changes in the ocean (likely from competition) combined with adaptive microevolution (decreased PMRNs) have produced the observed life-history patterns. PMRNs did not decrease in all populations, and we documented differences in magnitude and consistency of size selection and exploitation rates among populations. Incorporating evolutionary considerations and tracking further changes in life-history traits can support continued sustainable exploitation and productivity in these and other exploited natural resources.

PMID: 24567750 [PubMed]

via pubmed: school of aquatic an… http://ift.tt/1dytzgo


Genetic and morphometric divergence in threespine stickleback in the Chignik catchment, Alaska.

Related Articles

Genetic and morphometric divergence in threespine stickleback in the Chignik catchment, Alaska.

Ecol Evol. 2014 Jan;4(2):144-56

Authors: Taugbøl A, Junge C, Quinn TP, Herland A, Vøllestad LA

Abstract
Divergent selection pressures induced by different environmental conditions typically lead to variation in life history, behavior, and morphology. When populations are locally adapted to their current environment, selection may limit movement into novel sites, leading to neutral and adaptive genetic divergence in allopatric populations. Subsequently, divergence can be reinforced by development of pre-or postzygotic barriers to gene flow. The threespine stickleback, Gasterosteus aculeatus, is a primarily marine fish that has invaded freshwater repeatedly in postglacial times. After invasion, the established freshwater populations typically show rapid diversification of several traits as they become reproductively isolated from their ancestral marine population. In this study, we examine the genetic and morphometric differentiation between sticklebacks living in an open system comprising a brackish water lagoon, two freshwater lakes, and connecting rivers. By applying a set of microsatellite markers, we disentangled the genetic relationship of the individuals across the diverse environments and identified two genetic populations: one associated with brackish and the other with the freshwater environments. The “brackish” sticklebacks were larger and had a different body shape than those in freshwater. However, we found evidence for upstream migration from the brackish lagoon into the freshwater environments, as fish that were genetically and morphometrically similar to the lagoon fish were found in all freshwater sampling sites. Regardless, few F1-hybrids were identified, and it therefore appears that some pre-and/or postzygotic barriers to gene flow rather than geographic distance are causing the divergence in this system.

PMID: 24558570 [PubMed]

via pubmed: school of aquatic an… http://ift.tt/1hEwnzS


Size selectivity of predation by brown bears depends on the density of their sockeye salmon prey.

Related Articles

Size selectivity of predation by brown bears depends on the density of their sockeye salmon prey.

Am Nat. 2013 May;181(5):663-73

Authors: Cunningham CJ, Ruggerone GT, Quinn TP

Abstract
Can variation in prey density drive changes in the intensity or direction of selective predation in natural systems? Despite ample evidence of density-dependent selection, the influence of prey density on predatory selection patterns has seldom been investigated empirically. We used 20 years of field data on brown bears (Ursus arctos) foraging on sockeye salmon (Oncorhynchus nerka) in Alaska, to test the hypothesis that salmon density affects the strength of size-selective predation. Measurements from 41,240 individual salmon were used to calculate variance-standardized selection differentials describing the direction and magnitude of selection. Across the time series, the intensity of predatory selection was inversely correlated with salmon density; greater selection for smaller salmon occurred at low salmon densities as bears’ tendency to kill larger-than-average salmon was magnified. This novel connection between density dependence and selective predation runs contrary to some aspects of optimal foraging theory and differs from many observations of density-dependent selection because (1) the direction of selection remains constant while its magnitude changes as a function of density and (2) stronger selection is observed at low abundance. These findings indicate that sockeye salmon may be subject to fishery-induced size selection from both direct mechanisms and latent effects of altered predatory selection patterns on the spawning grounds, resulting from reduced salmon abundance.

PMID: 23594549 [PubMed – indexed for MEDLINE]

via pubmed: school of aquatic an… http://www.ncbi.nlm.nih.gov/pubmed/23594549?dopt=Abstract


Relationship between effective population size, inbreeding and adult fitness-related traits in a steelhead (Oncorhynchus mykiss) population released in the wild.

Related Articles

Relationship between effective population size, inbreeding and adult fitness-related traits in a steelhead (Oncorhynchus mykiss) population released in the wild.

Mol Ecol. 2013 Mar;22(5):1295-309

Authors: Naish KA, Seamons TR, Dauer MB, Hauser L, Quinn TP

Abstract
Inbreeding is of concern in supportive breeding programmes in Pacific salmonids, Oncorhynchus spp, where the number of breeding adults is limited by rearing space or poor survival to adulthood, and large numbers are released to supplement wild stocks and fisheries. We reconstructed the pedigree of 6602 migratory hatchery steelhead (Oncorhynchus mykiss) over four generations, to determine the incidence and fitness consequences of inbreeding in a northwest USA programme. The hatchery maintained an effective population size, Ñ(e) = 107.9 from F(0) to F(2), despite an increasing census size (N), which resulted in a decreasing N(e)/N ratio (0.35 in F(0) to 0.08 in F(2)). The reduced ratio was attributed to a small broodstock size, nonrandom transfers and high variance in reproductive success (particularly in males). We observed accumulation of inbreeding from the founder generation (in F(4), percentage individuals with inbreeding coefficients Δf > 0 = 15.7%). Generalized linear mixed models showed that body length and weight decreased significantly with increasing Δf, and inbred fish returned later to spawn in a model that included father identity. However, there was no significant correlation between Δf and age at return, female fecundity or gonad weight. Similarly, there was no relationship between Δf and reproductive success of F(2) and F(3) individuals, which might be explained by the fact that reproductive success is partially controlled by hatchery mating protocols. This study is one of the first to show that small changes in inbreeding coefficient can affect some fitness-related traits in a monitored population propagated and released to the wild.

PMID: 23379933 [PubMed – indexed for MEDLINE]

via pubmed: school of aquatic an… http://www.ncbi.nlm.nih.gov/pubmed/23379933?dopt=Abstract


Predation by bears drives senescence in natural populations of salmon.

Related Articles

Predation by bears drives senescence in natural populations of salmon.

PLoS One. 2007;2(12):e1286

Authors: Carlson SM, Hilborn R, Hendry AP, Quinn TP

Abstract
Classic evolutionary theory predicts that populations experiencing higher rates of environmentally caused (“extrinsic”) mortality should senesce more rapidly, but this theory usually neglects plausible relationships between an individual’s senescent condition and its susceptibility to extrinsic mortality. We tested for the evolutionary importance of this condition dependence by comparing senescence rates among natural populations of sockeye salmon (Oncorhynchus nerka) subject to varying degrees of predation by brown bears (Ursus arctos). We related senescence rates in six populations to (1) the overall rate of extrinsic mortality, and (2) the degree of condition dependence in this mortality. Senescence rates were determined by modeling the mortality of individually-tagged breeding salmon at each site. The overall rate of extrinsic mortality was estimated as the long-term average of the annual percentage of salmon killed by bears. The degree of condition dependence was estimated as the extent to which bears killed salmon that exhibited varying degrees of senescence. We found that the degree of condition dependence in extrinsic mortality was very important in driving senescence: populations where bears selectively killed fish showing advanced senescence were those that senesced least rapidly. The overall rate of extrinsic mortality also contributed to among-population variation in senescence-but to a lesser extent. Condition-dependent susceptibility to extrinsic mortality should be incorporated more often into theoretical models and should be explicitly tested in natural populations.

PMID: 22423309 [PubMed – indexed for MEDLINE]

via pubmed: school of aquatic an… http://www.ncbi.nlm.nih.gov/pubmed/22423309?dopt=Abstract