Effects of management tactics on meeting conservation objectives for Western North American groundfish fisheries.

Related Articles

Effects of management tactics on meeting conservation objectives for Western North American groundfish fisheries.

PLoS One. 2013;8(2):e56684

Authors: Melnychuk MC, Banobi JA, Hilborn R

Abstract
There is considerable variability in the status of fish populations around the world and a poor understanding of how specific management characteristics affect populations. Overfishing is a major problem in many fisheries, but in some regions the recent tendency has been to exploit stocks at levels below their maximum sustainable yield. In Western North American groundfish fisheries, the status of individual stocks and management systems among regions are highly variable. In this paper, we show the current status of groundfish stocks from Alaska, British Columbia, and the U.S. West Coast, and quantify the influence on stock status of six management tactics often hypothesized to affect groundfish. These tactics are: the use of harvest control rules with estimated biological reference points; seasonal closures; marine reserves; bycatch constraints; individual quotas (i.e., ‘catch shares’); and gear type. Despite the high commercial value of many groundfish and consequent incentives for maintaining stocks at their most productive levels, most stocks were managed extremely conservatively, with current exploitation rates at only 40% of management targets and biomass 33% above target biomass on average. Catches rarely exceeded TACs but on occasion were far below TACs (mean catch:TAC ratio of 57%); approximately $150 million of potential landed value was foregone annually by underutilizing TACs. The use of individual quotas, marine reserves, and harvest control rules with estimated limit reference points had little overall effect on stock status. More valuable fisheries were maintained closer to management targets and were less variable over time than stocks with lower catches or ex-vessel prices. Together these results suggest there is no single effective management measure for meeting conservation objectives; if scientifically established quotas are set and enforced, a variety of means can be used to ensure that exploitation rates and biomass levels are near to or more conservative than management targets.

PMID: 23460809 [PubMed – indexed for MEDLINE]

via pubmed: school of aquatic an… http://www.ncbi.nlm.nih.gov/pubmed/23460809?dopt=Abstract


Predation by bears drives senescence in natural populations of salmon.

Related Articles

Predation by bears drives senescence in natural populations of salmon.

PLoS One. 2007;2(12):e1286

Authors: Carlson SM, Hilborn R, Hendry AP, Quinn TP

Abstract
Classic evolutionary theory predicts that populations experiencing higher rates of environmentally caused (“extrinsic”) mortality should senesce more rapidly, but this theory usually neglects plausible relationships between an individual’s senescent condition and its susceptibility to extrinsic mortality. We tested for the evolutionary importance of this condition dependence by comparing senescence rates among natural populations of sockeye salmon (Oncorhynchus nerka) subject to varying degrees of predation by brown bears (Ursus arctos). We related senescence rates in six populations to (1) the overall rate of extrinsic mortality, and (2) the degree of condition dependence in this mortality. Senescence rates were determined by modeling the mortality of individually-tagged breeding salmon at each site. The overall rate of extrinsic mortality was estimated as the long-term average of the annual percentage of salmon killed by bears. The degree of condition dependence was estimated as the extent to which bears killed salmon that exhibited varying degrees of senescence. We found that the degree of condition dependence in extrinsic mortality was very important in driving senescence: populations where bears selectively killed fish showing advanced senescence were those that senesced least rapidly. The overall rate of extrinsic mortality also contributed to among-population variation in senescence-but to a lesser extent. Condition-dependent susceptibility to extrinsic mortality should be incorporated more often into theoretical models and should be explicitly tested in natural populations.

PMID: 22423309 [PubMed – indexed for MEDLINE]

via pubmed: school of aquatic an… http://www.ncbi.nlm.nih.gov/pubmed/22423309?dopt=Abstract


Patterns of ecosystem metabolism in the tonle sap lake, cambodia with links to capture fisheries.

Related Articles

Patterns of ecosystem metabolism in the tonle sap lake, cambodia with links to capture fisheries.

PLoS One. 2013;8(8):e71395

Authors: Holtgrieve GW, Arias ME, Irvine KN, Lamberts D, Ward EJ, Kummu M, Koponen J, Sarkkula J, Richey JE

Abstract
The Tonle Sap Lake in Cambodia is a dynamic flood-pulsed ecosystem that annually increases its surface area from roughly 2,500 km(2) to over 12,500 km(2) driven by seasonal flooding from the Mekong River. This flooding is thought to structure many of the critical ecological processes, including aquatic primary and secondary productivity. The lake also has a large fishery that supports the livelihoods of nearly 2 million people. We used a state-space oxygen mass balance model and continuous dissolved oxygen measurements from four locations to provide the first estimates of gross primary productivity (GPP) and ecosystem respiration (ER) for the Tonle Sap. GPP averaged 4.1±2.3 g O2 m(-3) d(-1) with minimal differences among sites. There was a negative correlation between monthly GPP and lake level (r = 0.45) and positive correlation with turbidity (r = 0.65). ER averaged 24.9±20.0 g O2 m(-3) d(-1) but had greater than six-fold variation among sites and minimal seasonal change. Repeated hypoxia was observed at most sampling sites along with persistent net heterotrophy (GPP<ER), indicating significant bacterial metabolism of organic matter that is likely incorporated into the larger food web. Using our measurements of GPP, we calibrated a hydrodynamic-productivity model and predicted aquatic net primary production (aNPP) of 2.0±0.2 g C m(-2) d(-1) (2.4±0.2 million tonnes C y(-1)). Considering a range of plausible values for the total fisheries catch, we estimate that fisheries harvest is an equivalent of 7-69% of total aNPP, which is substantially larger than global average for marine and freshwater systems. This is likely due to relatively efficient carbon transfer through the food web and support of fish production from terrestrial NPP. These analyses are an important first-step in quantifying the resource pathways that support this important ecosystem.

PMID: 23967203 [PubMed – in process]

via pubmed: school of aquatic an… http://www.ncbi.nlm.nih.gov/pubmed/23967203?dopt=Abstract


Quantitative PCR analysis used to characterize physiological changes in brain tissue of senescent sockeye salmon.

Quantitative PCR analysis used to characterize physiological changes in brain tissue of senescent sockeye salmon.

Biogerontology. 2013 Aug 15;

Authors: Storer CS, Quinn TP, Roberts SB

Abstract
Senescence varies considerably among fishes, and understanding the evolutionary basis for this diversity has become an important area of study. For rapidly senescing species such as Pacific salmon, senescence is a complex process as these fish are initiating anorexia while migrating to natal spawning grounds, and die within days of reproduction. To better understand senescence in Pacific salmon we examined expression patterns for a suite of genes in brain tissue of pre-senescent and senescent sockeye salmon. Interestingly, a significant increase in expression of genes involved in telomere repair and immune activity was observed in senescent salmon. These data provide insight into physiological changes in salmon undergoing senescence and the factors contributing to variation in observed senescence rates among individuals and populations.

PMID: 23948798 [PubMed – as supplied by publisher]

via pubmed: school of aquatic an… http://www.ncbi.nlm.nih.gov/pubmed/23948798?dopt=Abstract


Sensitivity of salmonid freshwater life history in western US streams to future climate conditions.

Related Articles

Sensitivity of salmonid freshwater life history in western US streams to future climate conditions.

Glob Chang Biol. 2013 Aug;19(8):2547-56

Authors: Beer WN, Anderson JJ

Abstract
We projected effects of mid-21st century climate on the early life growth of Chinook salmon (Oncorhynchus tshawytscha) and steelhead (O. mykiss) in western United States streams. Air temperature and snowpack trends projected from observed 20th century trends were used to predict future seasonal stream temperatures. Fish growth from winter to summer was projected with temperature-dependent models of egg development and juvenile growth. Based on temperature data from 115 sites, by mid-21st century, the effects of climate change are projected to be mixed. Fish in warm-region streams that are currently cooled by snow melt will grow less, and fish in suboptimally cool streams will grow more. Relative to 20th century conditions, by mid-21st century juvenile salmonids’ weights are expected to be lower in the Columbia Basin and California Central Valley, but unchanged or greater in coastal and mountain streams. Because fish weight affects fish survival, the predicted changes in weight could impact population fitness depending on other factors such as density effects, food quality and quantity changes, habitat alterations, etc. The level of year-to-year variability in stream temperatures is high and our analysis suggests that identifying effects of climate change over the natural variability will be difficult except in a few streams.

PMID: 23640715 [PubMed – indexed for MEDLINE]

via pubmed: school of aquatic an… http://www.ncbi.nlm.nih.gov/pubmed/23640715?dopt=Abstract


Riding the crimson tide: mobile terrestrial consumers track phenological variation in spawning of an anadromous fish.

Related Articles

Riding the crimson tide: mobile terrestrial consumers track phenological variation in spawning of an anadromous fish.

Biol Lett. 2013;9(3):20130048

Authors: Schindler DE, Armstrong JB, Bentley KT, Jankowski K, Lisi PJ, Payne LX

Abstract
When resources are spatially and temporally variable, consumers can increase their foraging success by moving to track ephemeral feeding opportunities as these shift across the landscape; the best examples derive from herbivore-plant systems, where grazers migrate to capitalize on the seasonal waves of vegetation growth. We evaluated whether analogous processes occur in watersheds supporting spawning sockeye salmon (Oncorhynchus nerka), asking whether seasonal activities of predators and scavengers shift spatial distributions to capitalize on asynchronous spawning among populations of salmon. Both glaucous-winged gulls and coastal brown bears showed distinct shifts in their spatial distributions over the course of the summer, reflecting the shifting distribution of spawning sockeye salmon, which was associated with variation in water temperature among spawning sites. By tracking the spatial and temporal variation in the phenology of their principal prey, consumers substantially extended their foraging opportunity on a superabundant, yet locally ephemeral, resource. Ecosystem-based fishery management efforts that seek to balance trade-offs between fisheries and ecosystem processes supported by salmon should, therefore, assess the importance of life-history variation, particularly in phenological traits, for maintaining important ecosystem functions, such as providing marine-derived resources for terrestrial predators and scavengers.

PMID: 23554279 [PubMed – indexed for MEDLINE]

via pubmed: school of aquatic an… http://www.ncbi.nlm.nih.gov/pubmed/23554279?dopt=Abstract


The soundscapes of lakes across an urbanization gradient.

Related Articles

The soundscapes of lakes across an urbanization gradient.

PLoS One. 2013;8(2):e55661

Authors: Kuehne LM, Padgham BL, Olden JD

Abstract
UNLABELLED: BACKGROUND/METHODOLOGY: A significant implication of increasing urbanization is anthropogenic noise pollution. Although noise is strongly associated with disruption of animal communication systems and negative health effects for humans, the study of these consequences at ecologically relevant spatial and temporal scales (termed soundscape ecology) is in early stages of application. In this study, we examined the above- and below-water soundscape of recreational and residential lakes in the region surrounding a large metropolitan area. Using univariate and multivariate approaches we test the importance of large- and local-scale landscape factors in driving acoustic characteristics across an urbanization gradient, and visualize changes in the soundscape over space and time.
PRINCIPAL FINDINGS: Anthropogenic noise (anthrophony) was strongly predicted by a landcover-based metric of urbanization (within a 10 km radius), with presence of a public park as a secondary influence; this urbanization signal was apparent even in below-water recordings. The percent of hourly measurements exceeding noise thresholds associated with outdoor disturbance was 67%, 17%, and 0%, respectively, for lakes characterized as High, Medium, and Low urbanization. Decreased biophony (proportion of natural sounds) was associated with presence of a public park followed by increased urbanization; time of day was also a significant predictor of biophony. Local-scale (shoreline) residential development was not related to changes in anthrophony or biophony. The patterns we identify are illustrated with a multivariate approach which allows use of entire sound samples and facilitates interpretation of changes in a soundscape.
CONCLUSIONS/SIGNIFICANCE: As highly valued residential and recreation areas, lakes represent everyday soundscapes important to both humans and wildlife. Our findings that many of these areas, particularly those with public parks, routinely experience sound types and levels associated with disturbance, suggests that urban planners need to account for the effect of increasing development on soundscapes to avoid compromising goals for ecological and human health.

PMID: 23424636 [PubMed – indexed for MEDLINE]

via pubmed: school of aquatic an… http://www.ncbi.nlm.nih.gov/pubmed/23424636?dopt=Abstract


Impacts of ocean acidification on marine seafood.

Related Articles

Impacts of ocean acidification on marine seafood.

Trends Ecol Evol. 2013 Mar;28(3):178-86

Authors: Branch TA, DeJoseph BM, Ray LJ, Wagner CA

Abstract
Ocean acidification is a series of chemical reactions due to increased CO(2) emissions. The resulting lower pH impairs the senses of reef fishes and reduces their survival, and might similarly impact commercially targeted fishes that produce most of the seafood eaten by humans. Shelled molluscs will also be negatively affected, whereas cephalopods and crustaceans will remain largely unscathed. Habitat changes will reduce seafood production from coral reefs, but increase production from seagrass and seaweed. Overall effects of ocean acidification on primary productivity and, hence, on food webs will result in hard-to-predict winners and losers. Although adaptation, parental effects, and evolution can mitigate some effects of ocean acidification, future seafood platters will look rather different unless CO(2) emissions are curbed.

PMID: 23122878 [PubMed – indexed for MEDLINE]

via pubmed: school of aquatic an… http://www.ncbi.nlm.nih.gov/pubmed/23122878?dopt=Abstract


Resource competition induces heterogeneity and can increase cohort survivorship: selection-event duration matters.

Resource competition induces heterogeneity and can increase cohort survivorship: selection-event duration matters.

Oecologia. 2013 Aug 3;

Authors: Gosselin JL, Anderson JJ

Abstract
Determining when resource competition increases survivorship can reveal processes underlying population dynamics and reinforce the importance of heterogeneity among individuals in conservation. We ran an experiment mimicking the effects of competition in a growing season on survivorship during a selection event (e.g., overwinter starvation, drought). Using a model fish species (Poecilia reticulata), we studied how food availability and competition affect mass in a treatment stage, and subsequently survivorship in a challenge stage of increased temperature and starvation. The post-treatment mean mass was strongly related to the mean time to mortality and mass at mortality at all levels of competition. However, competition increased variance in mass and extended the right tail of the survivorship curve, resulting in a greater number of individuals alive beyond a critical temporal threshold ([Formula: see text]) than without competition. To realize the benefits from previously experienced competition, the duration of the challenge ([Formula: see text]) following the competition must exceed the critical threshold [Formula: see text] (i.e., competition increases survivorship when [Formula: see text]). Furthermore, this benefit was equivalent to increasing food availability by 20 % in a group without competition in our experiment. The relationship of [Formula: see text] to treatment and challenge conditions was modeled by characterizing mortality through mass loss in terms of the stochastic rate of loss of vitality (individual’s survival capacity). In essence, when the duration of a selection event exceeds [Formula: see text], competition-induced heterogeneity buffers against mortality through overcompensation processes among individuals of a cohort. Overall, our study demonstrates an approach to quantify how early life stage heterogeneity affects survivorship.

PMID: 23912261 [PubMed – as supplied by publisher]

via pubmed: school of aquatic an… http://www.ncbi.nlm.nih.gov/pubmed/23912261?dopt=Abstract